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A rational expansion of the Fermi density operator is proposed. This approach
allows us to calculate efficiently the physical properties of fermionic systems at
finite temperatures without solving an eigenvalue problem. UsingN evaluations
of the Green’s function, the Fermi density operator can be approximated, subject
to a given precision, in the energy interval [−β,∞] with β ∝ N. The presented
method may become especially useful for electronic structure calculations involving
the calculation of charge densities, but it may also find other applications in, e.g.,
signal processing and numerical linear algebra.c© 1998 Academic Press
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1. INTRODUCTION

Quantum systems are most generally described in terms of their density operatorρ. Once
ρ is known, the expectation values of physical quantities are obtained as

〈A〉 = Tr(ρA), (1)

whereA is the associated operator of the quantity under consideration. For instance, for the
calculation of the charge density,A becomes a projector and the charge density is simply
given by the diagonal elements ofρ in the site representation. In the following we consider
fermionic systems in the grand-canonical ensemble, where

ρ(µ, T) = f

(
H − µ

kT

)
, (2)

with H, T , andµ being the Hamiltonian, the temperature, and the chemical potential
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respectively, and

f (x) = 1

1+ ex
(3)

being the Fermi function. The Fermi function has been studied extensively, and effective
approximation schemes for the case of scalar arguments, e.g. the Sommerfeld expansion,
have been developed [1].

However, for the calculation of, e.g.ρ, one is faced withf applied to operators. For large
scale applications, it cannot be switched into the eigen representation ofH in order to eval-
uate Eq. (2), since in general full diagonalization ofH is practically impossible. Because
only polynomial and fractional functions of operators can be evaluated, corresponding de-
compositions off (x) are highly desirable. A recent approach is due to Goedecker [2] who
proposed using systematically complex line integrals over the Green’s function, and similar
approaches in electronic structure calculations have been employed since then [3]. In the
following a fractional expansion is presented which does not depend on the calculation of
line integrals. It will be shown that physical quantities like the charge density, which is at
the base of many methods in electronic structure calculations, can be obtained effectively
withoutsolving an eigenvalue problem, necessitating only evaluations of the Green’s func-
tion at selected points. While the method isa priori constructed for finite temperatures, it
is also well adapted to approximate charge densities at zero temperature since the range of
the approximation can be arbitrarily extended toward lower temperatures.

2. FRACTIONAL EXPANSION

It is well known, that the Matsubara expansion [4] of the Fermi function,

f (x) = 1/2− 2
∞∑

m=0

x

x2+ [(2m+ 1)π ]2
, (4)

shows very poor convergence properties when truncated to degreem= N. Although being
the exact fractional series off (x), the Matsubara expansion is therefore not suited for
numerical applications.

Let us consider the function

fα(x) := f (x − α) f (−x − α) = eα

2[cosh(α)+ cosh(x)]
, (5)

which is depicted in Fig. 1 forα = 20. It is readily seen that for sufficiently highα > 0,
fα(x + α) will approximate f (x) for all x > −α, subject to a given precision. We now
truncate the series in the denominator,

fα(x) ≈ gN(x;α) := eα

2pN(x;α), (6)

where

pN(x;α) = cosh(α)+
N∑

j=0

x2 j

(2 j )!
. (7)
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FIG. 1. The symmetric functionfα(x) for α = 20.

It is readily seen thanpN(x;α) has no real zeros. For the fractional expansion of Eq. (6),
we need all zeroszν, ν = 1, . . . , N, of q(z) := pN(x;α)|x2=z (see [7]). For this purpose
we define

y1 = 1+ cosh(α); yi (z) = zi−1

[2(i − 1)]!
, i = 2, . . . , N − 1. (8)

Then, it can be seen that

y(z) ≡ (y1(z), . . . , yN(z))
T

satisfies a matrix equationAy(zν) = zνy(zν), with theN × N matrix A≡ (ai, j ),

ai, j =


2+ 2 cosh(α) if (i, j ) = (1, 2);
2l (2l − 1) if (i, j ) = (l , l + 1), l = 2, . . . , N − 1;
2N(1− 2N) if i = N;
0 else.

(9)

One easily shows that thezν are given by the eigenvalues of the matrixA. It is well known
that the zeros of a given polynomial can be obtained from an eigenvalue problem for a related
Hessenberg matrix [5]. Goedecker [6] already has proposed to use this fact for the numerical
evaluation of all zeros of a polynomial as eigenvalues. The usual scheme corresponds to the
implicit choice ofyi = zi−1; here the point is to avoid the explicit use of any factorial by using
Eq. (8) leading to Eq. (9). Thezν can be obtained as eigenvalues with, e.g. QR-rotations in a
numerically stable way; using standard numerical libraries,N= 40 still yields accurate re-
sults, and enhanced precision calculations readily allow for largerN. However,N= 30 will
be already sufficient for many applications as will be shown. In the following we stick to
evenN. For convenience, we also choseN andα so that no duplicate zeroszν are obtained.
From the zeros we obtain the 2N-zerosxν of pN(x;α) as±√zν . The zerosxν;α do behave
well, an example is plotted in Fig. 2(i).

Denoting

γν = eα

4q′
(
x2
ν

)
xν
, (10)
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FIG. 2. Positions of the zerosxν (i) and the fractional coefficientsγν (ii) in the complex plane for the fractional
expansion withN= 32 andα= 26.

we now may write down the fractional decomposition

fα(x) ≈ gN(x;α) =
2N∑
ν=1

γν

x − xν
. (11)

As shown in Fig. 2(ii), the coefficientsγν also behave well. The approximation Eq. (11)
converges rapidly. Choosing, e.g.N= 32 andα= 26, the error in approximatingfα(x) is
less than 10−9 for all realx.

Clearly, for the reason of limited numerical precision, a Horner-like scheme should be
used in order to evaluate the polynomialq′(z) =∑N

j=1 ( j z j−1/(2 j )!) to avoid any explicit
use of the factorial, i.e.,

q′(z)

= 1

2

(
1+ z

3 ∗ 4

(
2+ z

5 ∗ 6

(
. . .

z

(2N − 2)(2N − 3)

(
N − 1+ zN

(2N)(2N − 1)

)
. . .

)))
.

We have considered the symmetric functionfα, since we may now exploit thelocal symme-
try of fα(x) about the pointsx = ±α, wherefα(x) = 0.5. We can approximate successively
the Fermi function as the sum of shifted functionsgN(x;α),

f (x) ≈ gN(x + α;α)+ gN(x + 3α;α)+ · · · + gN(x + (2M − 1)α;α), (12)

in the range [−(2M − 1)α,∞]. This is visualized in Fig. 3 forN= 32 andα= 26, using
M N= 96 fractional terms [8]. Forx → ∞, the approximation Eq. (12) vanishes like
x−2N , compared to exponential decay of the Fermi function, resulting naturally in a good
approximation. For negativex, the validity range of the approximation Eq. (12) may be
increased by choosing a higherM , i.e., by successively adding shifted realizations of
gN(x + (2m− 1)α;α). Principally, one could also use a single “basic function” (M = 1)
in conjunction with a large value ofα which necessitates, however, the use of enhanced
precision for the calculation of thexν , as well as of theγν ; finally, this procedure will also
be limited by the numerical accuracy of the eigenvalues of the matrixA, as well as of the
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FIG. 3. Fermi function f (x) and the fractional expansion withM = 3, N = 32, α = 26. The dotted lines
indicate theM = 3 shifted addents. The error in approximatingf (x) is less than 10−9 for x ≥ −135.

accuracy of the the evaluation of the polynomialq′ (see Ref. [9]). In contrast, the expansion
Eq. (12) provides a systematic way to construct a step-like function over an arbitrarily large
interval within fixed error bounds.

We note, that the functionf(ξα)(ξx) (see Eq. (5)) represents for sufficiently largeξ a
nearly perfect projector on the subspacex ∈ [−α, α]. The presented rational expansion
may, therefore, also find applications in other fields than physics, especially when applied
to operators.

3. APPLICATION TO OPERATORS

The main interest of the approximation Eq. (12) lies in its generalization as operator
equation, replacingx by some HamiltonianH. Then, the Fermi density operator

ρ(kT) = 1

/(
1+ exp

(
H − µ

kT

))
≈ kT

2N∑
ν=1

M∑
m=1

γν

H − µ+ kT[(2m− 1)α − xν ]
(13)

can be approximated efficiently withM N evaluations of the Green’s function. One may,
furthermore, benefit from the fact that the zerosxν , as well as the correspondingγν;α, come
in quartetsxν, x∗ν ,−xν,−x∗ν if the zν are distinct.

When applied to operatorsH, the effect of the approximation Eq. (13) is to cut off
the contributions of states with eigenvalues smaller thanεl = µ − kT(2M − 1)α (see
also Fig. 3). This has no consequences if the spectrum ofH is lower bounded with no
eigenvalues in this domain. There are certainly applications when this effect is wanted, e.g.
when considering the contributions of subbands separately.

In the example of Fig. 3,M = 3 may be too small for applications involving real metals,
since the eigenvalue spectrum is covered down to−3.5 eV only at room temperature, and
a higherM may be needed. However,M = 3 andN= 32 already is well adapted for, e.g.
two-dimensional electron gases in mesoscopic systems. Assuming a Fermi level of about
15 meV, the Fermi density operator can be approximated quite exactly at temperatures down
to 1.5 K.

The following simple example demonstrates how the total charge density can be obtained
without solving an eigenvalue problem. Consider the Hamiltonian

H =
∑

j

ε j a
†
j aj −

∑
j,k

t j,k(a
†
j ak + H.c.),
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FIG. 4. Total chargentot =
∑Ns

j=1nj as function ofθ := kT/(µ− λmin), whereλmin is the smallest eigenvalue
(see text). The error in approximatingntot using Eq. (13) withN = 32, α = 18, andM = 3 is less than 10−6.

where the on-site energiesε j have been chosen from a uniform random distribution
ε j ∈ ]3, 5[, and the hopping amplitudest j,k have been chosen as 1 forj, k ≡ ( jx, j y)T ,
(kx, ky)

T being nearest neighbors in the two-dimensional plane. This Hamiltonian describes
free spinless electrons in a discrete two-dimensional space in the presence of a random
impurity potential. Hard wall boundary conditions have been assumed for a system with
Ns = 15×15 sites, allowing conveniently for direct diagonalization. The chemical potential
has been fixed between the 25th and 26th smallest eigenvalue ofH ,µ = (λ25+λ26)/2; i.e.,
the system is in contact with a heat bath of constant chemical potential. We are interested
in the total charge density as function of temperatureT , especially in the limit ofT → 0.

In our case, the considered system is small enough to calculate the charge densitynj at
site j exactly as

nj =
Ns∑

i=1

∣∣u(i )j

∣∣2 f

(
λi − µ

kT

)
,

where theu(i ) are the normalized eigenvectors, thus allowing for direct comparison.
We now approximate the Fermi density operatorρ according to Eq. (13). As noted in

the Introduction, the charge density is given in this case by the diagonal elements ofρ. The
results presented in Fig. 4 have been obtained usingM N= 96 evaluations of the Green’s
function. It is seen that the charge density is indeed very well approximated in the domain
where Eq. (12) approximates Eq. (3) as discussed previously. The total charge density at
zero temperature (which is, of course, given by the number of states with energy smaller
than the chemical potential, i.e., 25 in the present example), is practically identical to the
total charge density at low temperatures.

4. CONCLUSIONS

A fractional approximation of the Fermi density operator has been proposed and the
necessary concepts have been presented. This method becomes increasingly appropriate
for higher temperatures where the numerical effort decreases. However, its range of con-
vergence can be arbitrarily extended toward lower temperatures. It is expected to be useful
especially for large-scale calculations at finite temperatures as, e.g. investigations of dis-
ordered systems, mesoscopic systems, and electronic structure calculations, in general.
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